Multi-Agent Data Mining Framework (MADM)

ثبت نشده
چکیده

There is a vast amount of data available that is owned and maintained by different organizations, distributed all around the world. These data resources are rich and recent; however, information gathering and knowledge discovery from them, in a particular knowledge domain, confronts major difficulties. The objective of this research is to introduce a Multi-Agent Data Mining framework (MADM) to support building of distributed data mining architecture and explores the capabilities of software agents’ paradigm and will show by experiment that, it is suited for distributed data mining compared to traditional approaches like central data mining.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generic and Extendible Multi-Agent Data Mining Framework

A generic and extendible Multi-Agent Data Mining (MADM) framework, EMADS (the Extendible Multi-Agent Data mining System) is described. The central feature of the framework is that it avoids the use of agreed meta-language formats by supporting a system of wrappers. The advantage offered is that the system is easily extendible, so that further data agents and mining agents can simply be added to...

متن کامل

Multi-agent data mining with negotiation : a study in multi-agent based clustering

Multi-Agent Data Mining (MADM) seeks to harness the general advantages offered by Multi-Agent System (MAS) with respect to the domain of data mining. The research described in this thesis is concerned with Multi-Agent Based Clustering (MABC), thus MADM to support clustering. To investigate the use of MAS technology with respect to data mining, and specifically data clustering, two approaches ar...

متن کامل

An investigation into the issues of multi-agent data mining

Very often data relevant to one search is not located at a single site, it may be widely-distributed and in many different forms. Similarly there may be a number of algorithms that may be applied to a single Knowledge Discovery in Databases (KDD) task with no obvious “best” algorithm. There is a clear advantage to be gained from a software organisation that can locate, evaluate, consolidate and...

متن کامل

Multi-Agent Based Clustering: Towards Generic Multi-Agent Data Mining

A framework for Multi Agent Data Mining (MADM) is described. The framework comprises a collection of agents cooperating to address given data mining tasks. The fundamental concept underpinning the framework is that it should support generic data mining. The vision is that of a system that grows in an organic manner. The central issue to facilitating this growth is the communication medium requi...

متن کامل

Clustering in a Multi-Agent Data Mining Environment

A Multi-Agent based approach to clustering using a generic Multi-Agent Data Mining (MADM) framework is described. The process use a collection of agents, running several different clustering algorithms, to determine a “best” cluster configuration. The issue of determining the most appropriate configuration is a challenging one, and is addressed in this paper by considering two metrics, total Wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008